Abstract:Flash heavy rain and the resulting low visibility make it difficult for pilots to visually assess the runway clearly, severely impacting the take-off and landing of aircraft, thereby posing a threat to aviation operational safety. Moreover, the flight delays and diversions caused by this also result in significant losses for airlines and negatively affect socioeconomic benefits. Therefore, conducting comprehensive studies on flash heavy rain is crucial for ensuring aviation safety and enhancing flight punctuality. A thorough analysis of sufficiently detailed observational data is beneficial for clarifying the dynamic mechanisms of convective organisation and enhancement. On July 15, 2022, Xiamen Airport experienced a rare flash heavy rain event triggered by a weak background gust front. During this period, the precipitation intensity peaked at 2.5 mm per minute, and runway visibility rapidly decreased to 600 m, which is relatively uncommon at Xiamen Airport. To analyse this flash heavy rain event, this study utilises minute rainfall data from both ends of the runway, conventional observational data, densified automatic weather station data, ERA5 reanalysis, and S-band dual-polarisation and X-band dual-polarisation phased array radar data of Xiamen. The results of the study indicate that this event occurred under weak weather-scale forcing, where the gust front triggered uplift by intersecting and merging with the surface convergence line during propagation. In an environment characterised by negative large values of pseudo-equivalent potential temperature (θse500-850 hPa) and a warm and humid lower atmosphere, new convection was stimulated, resulting in the rare flash heavy rain at Xiamen Airport. During heavy rain, strong water vapour convergence appeared in the boundary layer at 1000 hPa. Minute rainfall on the runway showed an inverse correlation with visibility, but this correlation weakened when the minute rainfall exceeded 1.6 mm, and the visibility minimum lagged behind the rainfall peak by 7 minutes. Observational analysis reveals that the cyclonic shear of radial velocity was consistent with the trend of minute rainfall change. The peak minute rainfall at both ends of the runway corresponded to the peak cyclonic shear at a certain height layer, indicating a good correspondence between the two. When there was cyclonic shear in the radial velocity at heights of 2-5 km, rainfall significantly intensified. When the shear intensity at two height layers exceeded 2×10-3s-1, minute rainfall could reach approximately 2 mm (equivalent to an hourly rainfall of 120 mm), which emerged as a characteristic feature of this flash heavy rain event.